AUTOMATED TRAFFIC SIGNAL PERFORMANCE MEASURES: CASE STUDIES

INSTITUTE OF TRANSPORTATION ENGINEERS WEBINAR PART 2 – MAY 7, 2014

AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS

ITE Webinar Series on Automated Traffic Signal Performance Measures (SPMs)

Achieve Your Agency's Objectives Using SPMs April 9, 2014, 12:00 pm to 1:30 pm. Eastern

SPM Case Studies

May 7, 2014, 12:00 pm to 1:30 pm. Eastern

Critical Infrastructure Elements for SPMs June 11, 2014, 12:00 pm to 1:30 pm. Eastern Automated Traffic Signal Performance Measures

Technology Implementation Group: 2013 Focus Technology

http://tig.transportation.org

Mission: Investing time and money to accelerate technology adoption by agencies nationwide

DICE OF TRANSP

Your Speakers Today

Jamie Mackey, UDOT

Amanda Stevens, INDOT

Alex Hainen, Purdue

Steve Misgen, MnDOT

Mark Taylor, UDOT

AUTOMATED TRAFFIC SIGNAL PERFORMANCE MEASURES CASE STUDIES: UDOT

INSTITUTE OF TRANSPORTATION ENGINEERS WEBINAR PART 1 – MAY 7, 2014

PRESENTED BY JAMIE MACKEY, UDOT

What Can Automated Traffic Signal Performance Measures Do for You?

- Troubleshoot complaints and reduce wasted time for maintenance staff
- Catch problems as they happen
- Operate & optimize system without field data collection
- Retime signals as needed, not on a schedule
- Communicate signal/corridor/system performance to public & agency leaders

Log Action Taken

An AASHTO TIG-sponsored Technology

FAQ

Links

->5	igna	I M	etrics

Charts

udot.utah.gov

Reports

Selected Signal 7376 5600 West SR-201 Westbound Signals Region All Metric Type All Filter Signal Id Filter Clear Filter	Metric Settings Metric Type Approach Delay Approach Volume Arrivals On Red Purdue Phase Termination Speed Split Monitor
Signal List	Y Axis Maximum Percentile Split 85 Show Plan Stripes Show % Max Out/ Force Off Show Ped Activity Show Percent Gap Outs Show Average Split Show Percent Skip Upload Current Data Dates Start Date $5/1/2014$ $12:00$ AM \checkmark End Date $5/1/2014$ $11:59$ PM \checkmark Reset Date \leq May 2014 \geq Sun Mon Tue Wed Thu Fri Sat 27 28 29 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
TEXAS MISSISSIPH Louisiana Di bing © 2013 Nokia © 2014 Microsoft Corporation	10 19 20 21 22 25 24 25 26 27 28 29 30 31 1 2 3 4 5 6 7

Create Metrics

http://udottraffic.utah.gov/signalperformancemetrics


```
Charts
```

Reports

Log Action Taken

Links

An AASHTO

TIG-sponsored Technology

FAQ

Agencies using UDOT software for SPMs

http://udottraffic.utah.gov/signalperformancemetrics

System Requirements

High-resolution Controller

Communications

Can be done <u>independent</u> of a Central System!

Website

3) Store in Database

Photo courtesy of the Indiana Department of Transportation

Detection

(optional)

Metrics & Detection Requirements

Controller high-resolution data only

Purdue Phase Termination

Split Monitor

Advanced Count Detection (~400 ft behind stop bar)

Purdue Coordination Diagram

Approach Volume

Platoon Ratio

Arrivals on Red

Approach Delay

Executive Summary Reports

Advanced Detection with Speed

Approach Speed

Lane-by-lane Count Detection

Turning Movement Counts

Lane-by-lane Presence Detection

Split Failure (future)

Probe Travel Time Data (GPS or Bluetooth)

Purdue Travel Time Diagram

UDOT Case Studies

Complaints
Maintenance
Alerts
Optimization

Normal Intersection Example: Phase Termination Chart

8-phase signal with working detection

Detection Requirements: None

Max recall was placed for broken NB detection

Force off

Metric: Phase Termination Chart Detection Requirements: None

Max recall was placed for broken NB detection

Max recall was placed for broken NB detection

Max recall was placed for broken NB detection

Complaint Example: Split too short

Is this a timing or a maintenance issue?

Maintenance Example: Nighttime detection problem

BEFORE: Video detection not working at night

Force off

Metric: Purdue Phase Termination Detection Requirements: None

Maintenance Example: Nighttime detection problem

AFTER: New detection technology installed

• Force off

Metric: Purdue Phase Termination Detection Requirements: None

Maintenance Example: Check for additional problems

Phase 2 ped problem was not noticed at field visit

Detection Requirements: None

Maintenance Example: Check for additional problems

Phase 2 ped problem was not noticed at field visit

Detection Requirements: None

Document recurring detection problems

Force off

Metric: Purdue Phase Termination Detection Requirements: None

Alert Example: 100% Max Out

Daily email at 7 a.m.

- Uses Purdue Phase Termination chart data
- Flags phases with >90% max-outs on each phase between 1 a.m. and 5 a.m.
- Compare to previous day's list. Only phases with new flags are sent in the email.

Metric: Purdue Phase Termination Detection Requirements: None

Alert Example: 100% Max Out Phase 4 Phase 4 at 400 E & 800 N, 4/9/2014

Force off

Optimization Example: Oversize Peds

Check frequency of ped calls

Metric: Purdue Phase Termination Detection Requirements: None

Optimization with SPMs

AUTOMATED TRAFFIC SIGNAL PERFORMANCE MEASURES CASE STUDIES: INDOT

INSTITUTE OF TRANSPORTATION ENGINEERS WEBINAR PART 1 – MAY 7, 2014 PRESENTED BY AMANDA STEVENS, INDOT AND ALEX HAINEN, PURDUE

Active Phase Events:

- Phase On 0
- 1 Phase Begin Green
- Phase Check
- 23 Phase Min Complete
- 456 Phase Gap Out
- Phase Max Out
- Phase Force Off
- 7 Phase Green Termination
- 8 Phase Begin Yellow Clearance
- 9 Phase End Yellow Clearance
- 10 Phase Begin Red Clearance
- 11 Phase End Red Clearance

Detector Events:

- 81 Detector Off
- 82 Detector On
- 83 Detector Restored
- Detector Fault-Other 84
- 85 Detector Fault-Watchdog Fault
- 86 Detector Fault-Open Loop Fault

Preemption Events:

- 101 Preempt Advance Warning Input
- 102 Preempt (Call) Input On
- 103 Preempt Gate Down Input Received
- 104 Preempt (Call) Input Off
- 105 Preempt Entry Started

Controller Enumerations Event Code, Event Description, Parameter

	06/27/2013 01:29:51.1	10	8
Detector 5 ON	06/27/2013 01:29:51.1	82	5
Delector 5 ON	06/27/2013 01:29:52.2	1	2
	06/27/2013 01:29:52.2	1	6
	06/27/2013 01:29:52.3	82	2
	06/27/2013 01:29:52.8	82	4
	06/27/2013 01:29:52.9	81	4
	06/27/2013 01:29:53.3	81	6
	06/27/2013 01:29:54.5	81	2
	06/27/2013 01:30:02.2	8	2
	06/27/2013 01:30:02.2	8	6
	06/27/2013 01:30:02.2	33	2
	06/27/2013 01:30:02.2	33	6
	06/27/2013 01:30:02.2	32	2
	06/27/2013 01:30:02.2	32	6
	06/27/2013 01:30:06.1	10	2
	06/27/2013 01:30:06.1	10	6
Phase & GREEN	06/27/2013 01:30:08.1	1	8
	06/27/2013 01:30:13.1	32	8
Detector 5 OFF	06/27/2013 01:30:15.8	81	5
Delector 5 OT	06/27/2013 01:30:18.5	82	6
	06/27/2013 01:30:27.5	81	6
	06/27/2013 01:30:30 4	R	R

High-resolution Data Timestamp, Enumeration Code, Parameter

Purdue Coordination Diagram: Red Arrival

Purdue Coordination Diagram: Green Arrival

PCD: Platoon Arrival by TOD

PCD: Adjust Offsets
INDOT System

- # SIGNALS TOTAL
- # SIGNALS ONLINE, AUTOMATICALLY STORING DATA & GENERATING PERFORMANCE MEASURE GRAPHS

• PEEK ATC, ECONOLITE ASC/3, SIEMENS M50 SERIES...

"Human-in-the-Loop-Adaptive"

- WEEKENDS & OFF-PEAKS
- ROUTINE RETIMINGS
- CONSTRUCTION SEASON:
 - You cannot be everywhere at once!
 - Could take Months for traffic to settle
 - Project in Flux:
 - Detection
 - Phases
 - Approaches / Lanes
 - Adjacent construction detours

Moving Forward:

- CLOSELY-SPACED SIGNALS ALSO NEED ADVANCED DETECTION ON LEFT TURNS
- SEPARATE DETECTION CHANNELS FOR EACH LANE

PCD: Cycle Failure

PCD φ2

6

9

12

PCD: Pattern Start & End Times

Hi-resolution Event-based Data for Diamond Interchange Operations ALEX HAINEN JIM STURDEVANT

ALEX HAINEN AMANDA STEVENS E CHRIS DAY

DARCY BULLOCK

RICK FREIJE

Diamond Interchanges Indiana = 161 Interchanges Nationally >= 10,000

Ring Displacement Offset Between Coordinated Phases

Traffic from SBT Vehicles from Ø6

Traffic from WBL North INT Vehicles from Ø7

Optimization Curves

Let's Look at the Southbound Thru (Our +0, +10, +20 example)

Optimization Curves Southbound Thru +10

Optimization Curves Southbound Thru +20

Optimization Curves Southbound Thru +20

Optimization Curves Southbound Thru for the Full Sweep

Optimization Curves Northbound Left

Composite Interchange Sweep

This is where all four movements are considered simultaneously

Field Evaluation Adjust +/- 10 to see how it worked in the field

Conclusion: These Graphics are Useful! Can they be included on newer generation traffic controllers?

Conclusion: These Graphics are Useful! Can they be included on newer generation traffic controllers?

AUTOMATED TRAFFIC SIGNAL PERFORMANCE MEASURES CASE STUDIES: MnDOT

INSTITUTE OF TRANSPORTATION ENGINEERS WEBINAR PART 1 – MAY 7, 2014

PRESENTED BY STEVE MISGEN, MNDOT

MnDOT - Metro District Background

- Operates about 700 signals (Mpls/St. Paul Metro area)
 - 250 signal on i2 central system
 - ▶ 450 on ARIES dial-up
- Econolite ASC2/ASC2S or ASC3 controllers
- Signal Performance Measure
 - ▶ 83 on Smart Signal
 - > 21 on Utah SPM

Smart Signal

University of Minnesota

- Henry Liu
- Minnesota Department of Transportation
- <u>http://dotapp7.dot.state.mn.us/smartsignal</u>
 - iMonitor "Real-time" Level of Service
 - iMeasure Data extraction tool

Smart Signal

iMonitor™ / iMeasure"

Como

Howe

Hiawatha

55

Fort Snelling

State Park

Meadow Lake

Longfellow

(280)

Decoville

Summit

University

THISTN

35E

Mendota

Heights

149)

Falcon

Heights

Union Park

Tangletown

110)

Eagan

Lebanon Hills

Regional Park

103

35E

St Paul

West St Paul

70th St W

(55)

149

Minnehaha Ave

94

Mississip

.

South

St Paul

Inver Grove

Heights

rthouse:Blvd

52

National River

Recreation A

12}

All programming content contained herein copyright SMART Signal Technologies, Inc.© 2013. Contains licensed material. US Patent No. 8,279,086. All rights reserved. (Last update: Feb. 28th, 2014).

35F

Smart Signal

The Project Develop New Timing Using High Resolution Data collected from SmartSignal

- 4 fully-actuated signals
- High speed 60-65 mph posted
- 33,000-68,000 AADT
- 7 TOD plans
- Last retimed 2009

Signal Timing Development

Standard Method

- Data Collection
 - Manual Turning Movement Count – 12 hour
 - System Detectors
- Synchro approximation of splits & cycle lengths
- Implementation & fine turning completed by time space diagram and field observations
- Before/After Comparison using Travel Time Studies

Improved Method

- Data Collection
 - Automated collection averaged over Sept-Oct for each movement (M-Th, F, S & S)
- Synchro Time-space diagram for best two-way progression
- Implementation & fine turning completed by time-space diagram and field observations
- Smart Signal monitor and make adjustments to insure efficiency
- Before/After Comparison using signal performance metrics

Volumes

September/October 2013 85th % Weekday Volumes - TH 10 at Thurston Avenue

Peak Periods Before/After Performance Comparison

Total Delay (Hours)

Number of Stops

Peak Periods Before/After Performance Comparison

Max Queue Length (Ft)

Saturation Level

Future Plans

Performance Index

- based on volume, delay, number of stops, max queue length, saturation level & percent of vehicles arriving on Green
- Calculate the PI for a given period on time (PM Peak) over a period of time (every Wednesday for the past year)
- Track the change on performance over time

When do you need to retime!

- Time-space Diagram
 - Real-time TSD based on detector actuations
- Performance Metrics
 - Emissions CO_2 fuel consumed

MnDOT Signal Performance Measures

Steve Misgen, PE, PTOE

MnDOT – Metro District

Traffic Engineer

Steve.misgen@state.mn.us

Find out more: http://tig.transportation.org

AASHTO TIG	TIG Home	
• TIG Home	AASHTO > AASHTO Technology Implementation Crown > TIC Home	
About TIG	AASHTO > AASHTO Technology Implementation Group > TIG Home	
Focus Technologies		
• Executive Committee	AASHTO's Technology Implementation Group — or TIG — sca technology and invests time and money to accelerate their a	ans the horizon for outstanding ad doption by agencies nationwide.
Feedback		
 Additionally Selected Technologies 	that has been adopted by at least one agency, is market rea	dy and is available for use by othe
 TIG-Solicitation 	Guided by the vision of "a culture where rapid advancement a	and implementation of high payoff,
● Lead States Team Guidance ▶	expectation of the transportation community," TIG's objective is to share information with AAS agencies, and their industry partners to improve the Nation's transportation system.	
	Recently selected technologies with links to additional information are listed below. Also, you m and Additionally Selected Technologies categorized by AASHTO subcommittee interest area.	
	Lead States Team Focus Technologies	Additionally Selected
	2013 Focus Technologies	2013 ASTs
	 Automated Traffic Signal Performance Measures UPlan Phase II 	Double Crossover Dia
		Prior Four Years ASTs
	Prior Four Years Focus Technologies	A
		 Anonymous Wireless

Time Data Collection

Currenture Extension f

- Embedded Data Collector
- Environmental Planning GIS Tools.

ITE Webinar Series on Automated Traffic Signal Performance Measures (SPMs)

Achieve Your Agency's Objectives Using SPMs April 9, 2014, 12:00 pm to 1:30 pm. Eastern

SPM Case Studies

May 7, 2014, 12:00 pm to 1:30 pm. Eastern

Critical Infrastructure Elements for SPMs June 11, 2014, 12:00 pm to 1:30 pm. Eastern

Jamie Mackey UDOT Amanda Stevens INDOT

Thank you.

Alex Hainen Purdue Steve Misgen MnDOT

QUESTIONS? http://tig.transportation.org

TIG SPM TEAM CONTACTS

Mark Taylor Utah DOT 801-887-3714 marktaylor@utah.gov

Jamie Mackey Utah DOT 801-887-3489 jamiemackey@utah.gov

Steve Misgen Minnesota DOT 651-234-7835 steve.misgen@state.mn.us Jim Sturdevant Indiana DOT 317-899-8603 jsturdevant@indot.in.gov

Richard Denney FHWA 410-962-4796 richard.denney@dot.gov

Andrew Wimsatt

TTI 979-862-4597 awimsatt@ttimail.tamu.edu