AUTOMATED TRAFFIC SIGNAL PERFORMANCE MEASURES: Critical Infrastructure Elements for SPMs

INSTITUTE OF TRANSPORTATION ENGINEERS WEBINAR PART 3 – JUNE 11, 2014

AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS

ITE Webinar Series on Automated Traffic Signal Performance Measures (SPMs)

Critical Infrastructure Elements for SPMs June 11, 2014, 12:00 pm to 1:30 pm. Eastern Automated Traffic Signal Performance Measures

Technology Implementation Group: 2013 Focus Technology

http://tig.transportation.org

Mission: Investing time and money to accelerate technology adoption by agencies nationwide

DICE OF TRANSP

Your Speakers Today

Sha<u>ne Johnson, UD</u>OT

Dr. Chris Day, Purdue

Howell Li, Purdue

Questions for the audience

- How many signals are under your jurisdiction?
- What types of vehicle detection are used at your intersections?
- Are there any communication infrastructure connecting your cabinets?
- What operating system platform(s) do you use (Windows, Linux, Mac)?
- What are some of your biggest challenges for enabling performance metrics in your area?

CRITICAL INFRASTRUCTURE ELEMENTS: Background

INSTITUTE OF TRANSPORTATION ENGINEERS WEBINAR PART 3 – JUNE 11, 2014 PRESENTED BY DR. CHRIS DAY

Overview

- Background on Automated Traffic Signal Performance Measures
- Hierarchy of Infrastructure Requirements
 - Communications
 - Detection
- Data Infrastructure for Agency Implementation
 - Utah DOT
 - Indiana DOT

Why Measure Traffic Signal Performance?

Better respond to user complaints

- Verify whether reported problems occur
- Identify solutions
- Proactively identify and correct operational and maintenance inefficiencies
 - Improve quality of progression
 - Improve capacity allocation

Time of Day

Average values versus full event timeline

When is intervention needed?

Legacy Data Collection: 15-Minute Average Detector Occupancy

What Is "High Resolution" Data? Detection **Events** Vehicle and Performance Control System Pedestrian Measures Activity **Events** Control Decisions

What Is "High Resolution" Data? 2 3 4 5 6789 Count Presence R Y G

Time

What Is "High Resolution" Data? 2 345 6789 Count Presence R Event 82 Event 81 Detector On Detector Off Y G

Time

What Is "High Resolution" Data?

Cycle-by-Cycle Performance Measures

Cycle-by-Cycle Performance Measures

Time of Day

History of Development

- Manual Data Collection
 - ▶ 5, 15 minute averages

- Monitoring Load Switch Circuits
 - High-resolution data
 - Latency and clock drift issues
 - "Do-it-yourself" data collection

- Embedded Controller Data Collector
 - Record controller events that do not correspond to circuit closures
 - Required vendor buy-in

Hardware-in-the-Loop Simulation

Field Data Collection Using Industrial I/O Equipment

Controller in Cabinet

Data:

- Signal Indications
- Detector Events
- Coordination Events

📕 northbound_data_ar	n.txt - Notepad								<u>- 🗆 ×</u>
<u>File Edit Format View</u>	Help		7						
240468FF0866600E	113	\ _g	reen	8/8/2005	2	3:59:58		100	416889' 🔺
040468FF0866600E	103	NM6 -	8/8/2005	23:	:59:58		100	41688970	
040468FF0866600E	113	NA6_g	reen	8/8/2005	2	3:59:58		100	416892'
040468FF0866600E	103	NA6	8/8/2005	23:	:59:58		100	41689270	
040468FF0866600E	102	Phase	2 8/9/2005	0:0	30:14 1	.00	41704622		1
040468FF0866600E	107	NB6_r	ed 8/9/2005	0:0	30:34 1	.00	41724880		1
040468FF0866600E	104	NB6	8/9/2005	0:0	00:34 1	.00	41724880		1
040468FF0866600E	107	NB6_r	ed 8/9/2005	0:0	00:34 1	.00	41725180		0
040468FF0866600E	104	NB6	8/9/2005	0:0	30:34 1	.00	41725180		0
040468FF0866600E	101	Phase	5 8/9/2005	0:0	30:34 1	.00	41725280		0
040468FF0866600E	102	Phase	2 8/9/2005	0:0	30:34 1	.00	41725280		0
040468FF0866600E	101	Phase	5 8/9/2005	0:0	30:44 1	.00	41735526		1
040468FF0866600E	113	NA6_g	reen	8/9/2005	e):01:38	100	41789291	
040468FF0866600E	103	NA6	8/9/2005	0:0	31:38 1	.00	41789291		1
040468FF0866600E	113	NA6_g	reen	8/9/2005	6):01:39	100	41789591	
040468FF0866600E	103	NA6	8/9/2005	0:0	01:39 1	.00	41789591		0
040468FF0866600E	112	NB6_g	reen	8/9/2005	6):01:53	100	41804042	
040468FF0866600E	104	NB6	8/9/2005	0:0	31:53 1	.00	41804042		1
040468FF0866600E	112	NB6_g	reen	8/9/2005	6):01:53	100	41804542	
040468FF0866600E	104	NB6	8/9/2005	0:0	01:53 1	.00	41804542		0
040468FF0866600E	102	Phase	2 8/9/2005	0:0	02:04 1	.00	41814988		1
040468FF0866600E	107	NB6_r	ed 8/9/2005	0:0	92:21 1	.00	41832543		1
040468FF0866600E	104	NB6	8/9/2005	0:0	32:21 1	.00	41832543		1
040468FF0866600E	107	NB6_r	ed 8/9/2005	0:0	32:22 1	.00	41832943		0
040468FF0866600E	104	NB6	8/9/2005	0:0	32:22 1	.00	41832943		0
040468FF0866600E	108	NA6_r	ed 8/9/2005	0:0	42:26 1	.00	41837549		1
040468FF0866600E	103	NA6	8/9/2005	0:0	42:26 1	.00	41837549		1
040468FF0866600E	108	NA6_r	ed 8/9/2005	0:0	<u> 12:27 1</u>	.00	41837849		<u>и</u>
040468FF0866600E	103	NA6	8/9/2005	0:0	52:27 1	.00	41837849		<u>ч</u>
•									• //

Field Data Collection Cabinet

Field Data Collection Cabinet

12:00:00 Time of Day

OBSOLETE

Pilot Test of Controller Data Logger (Fall 2006)

Objective: Vendor Neutrality

Development of Controller Data Enumerations

- Want to ensure that a "Phase 2 Green" is written down the same way in every vendor's controller
- Invited controller manufacturers to collaborate to agree on a specification for the data
- Three vendors initially participated
- Today, five vendors have implemented a controller data logger

Active Phase Events:

- Phase On 0
- 1 Phase Begin Green
- Phase Check
- 23 Phase Min Complete
- 456 Phase Gap Out
- Phase Max Out
- Phase Force Off
- 7 Phase Green Termination
- 8 Phase Begin Yellow Clearance
- 9 Phase End Yellow Clearance
- 10 Phase Begin Red Clearance
- 11 Phase End Red Clearance

Detector Events:

- 81 Detector Off
- 82 Detector On
- 83 Detector Restored
- Detector Fault-Other 84
- 85 Detector Fault-Watchdog Fault
- 86 Detector Fault-Open Loop Fault

Preemption Events:

- 101 Preempt Advance Warning Input
- 102 Preempt (Call) Input On
- 103 Preempt Gate Down Input Received
- 104 Preempt (Call) Input Off
- 105 Preempt Entry Started

Controller Enumerations Event Code, Event Description, Parameter

	06/27/2013 01:29:51.1	10	8
Detector 5 ON	06/27/2013 01:29:51.1	82	5
Delector 5 ON	06/27/2013 01:29:52.2	1	2
	06/27/2013 01:29:52.2	1	6
	06/27/2013 01:29:52.3	82	2
	06/27/2013 01:29:52.8	82	4
	06/27/2013 01:29:52.9	81	4
	06/27/2013 01:29:53.3	81	6
	06/27/2013 01:29:54.5	81	2
	06/27/2013 01:30:02.2	8	2
	06/27/2013 01:30:02.2	8	6
	06/27/2013 01:30:02.2	33	2
	06/27/2013 01:30:02.2	33	6
	06/27/2013 01:30:02.2	32	2
	06/27/2013 01:30:02.2	32	6
	06/27/2013 01:30:06.1	10	2
	06/27/2013 01:30:06.1	10	6
Phase & GREEN	06/27/2013 01:30:08.1	1	8
	06/27/2013 01:30:13.1	32	8
Detector 5 OFF	06/27/2013 01:30:15.8	81	5
Delector 5 OT	06/27/2013 01:30:18.5	82	6
	06/27/2013 01:30:27.5	81	6
	06/27/2013 01:30:30 4	R	R

High-resolution Data Timestamp, Enumeration Code, Parameter

Controllers with High Resolution Data Loggers (As of 2014)

Econolite

- Peek
- Siemens
- Intelight
- Trafficware (Naztec)

Hierarchy of Infrastructure Needs

System Requirements

High-resolution Controller

Communications

Query Database
Display Graphs

Detection (optional)

Photo courtesy of the Indiana Department of Transportation

Communications

Needed to bring data from the field to the office to develop performance measures

Communications

Methods of Data Transport Fiber Interconnect Cellular Modem "Sneaker-net"

Example Communications Infrastructure

Example Communications Infrastructure

Example Communications Infrastructure

Detection Requirements

- Need <u>some</u> kind of detection on each movement that is desired to be analyzed
 - Any detection technology can be used (provided that it works)
- Flexible Existing detection is often adequate
- Count detection allows more detailed analysis, but not required

Stopbar versus Advance Detection

- Stop bar detection
 - Measure vehicles as they are served
 - Useful for measuring utilization of capacity for individual movements
- Advance detection
 - Measure vehicles as they arrive at the intersection
 - Needed to evaluate progression
 - Can also evaluate utilization of capacity

Presence versus Count Detection

When detection zone is longer than the length of a typical vehicle

Option 1 – Presence Only

Measure detector occupancy

Option 2 – Presence with Count

- May require special detector equipment (e.g., count amplifier for loops)
- Measure volume of vehicles

Detection Types That Have Been Used

Inductive Loop
Radar
Video
Magnetometer

Metrics & Detection Requirements

Controller high-resolution data only

Purdue Phase Termination Split Monitor

Advanced Count Detection (~400 ft behind stop bar)

Purdue Coordination Diagram Approach Volume Platoon Ratio Arrivals on Red

Approach Delay

Executive Summary Reports

Advanced Detection with Speed

Approach Speed

Lane-by-lane Count Detection

Turning Movement Counts

Lane-by-lane Presence Detection

Split Failure (future)

Probe Travel Time Data (GPS or Bluetooth)

Purdue Travel Time Diagram

Example Applications of Performance Measures

1. Capacity Allocation

Split Failure and Split Adjustment

Quality of Progression
 Offset Optimization

Coordination Diagram

Coordination Diagram 24-Hour View

Modeling Changes to Offset

Offset Optimization Case Study

INDIANA **37**

Offset Optimization – BEFORE

Bad

48

5NB

Offset Optimization – AFTER

Impact on Travel Times

IV. Max Arrivals on Green with Queue Clearance

Northbound Travel Time

Impact on Travel Times

Northbound Travel Time

Estimation of User Benefit

		Daily					Annual		
		CO ₂			$\overline{\text{CO}_2}$				
		Total Time	Emission				Emission		
		Saved	Reduction	CO_2	User	Multi-	Reduction	CO_2	User
Objective		(veh-min)	(tons)	Savings	Benefits	plier	(tons)	Savings	Benefits
(a) System 1, Northern Section									
Ι	Min Delay	5032	0.71	\$16	\$1,697	52	37	\$810	\$88,233
II	Min Delay and Stops	3813	0.54	\$12	\$1,286	52	28	\$614	\$66,864
III	$\operatorname{Max} N_g$	1760	0.25	\$5	\$593	52	13	\$283	\$30,855
IV	Alt. Max N_g	7883	1.11	\$24	\$2,658	52	58	\$1,268	\$138,229
	(b) System 2, Southern Section								
Ι	Min Delay	24386	3.43	\$75	\$8,223	52	178	\$3,924	\$427,614
II	Min Delay and Stops	25327	3.56	\$78	\$8,541	52	185	\$4,075	\$444,111
III	$\operatorname{Max} N_g$	25147	3.54	\$78	\$8,480	52	184	\$4,046	\$440,962
IV	Alt. Max N_g	26338	3.70	\$81	\$8,882	52	193	\$4,238	\$461,845
(c) System 1 and System 2, Arterial									
Ι	Min Delay	29418	4.14	\$91	\$9,920	52	215	\$4,733	\$515,847
II	Min Delay and Stops	29140	4.10	\$90	\$9,826	52	213	\$4,689	\$510,976
III	$\operatorname{Max} \overline{N}_g$	26907	3.78	\$83	\$9,073	52	197	\$4,329	\$471,817
IV	Alt. Max N_g	34221	4.81	\$106	\$11,540	52	250	\$5,506	\$600,073

Impact of going from arrivals in red to arrivals in green

CRITICAL INFRASTRUCTURE ELEMENTS: UDOT Implementation

INSTITUTE OF TRANSPORTATION ENGINEERS WEBINAR PART 3 – JUNE 11, 2014

PRESENTED BY SHANE JOHNSON

Log Action Taken

An AASHTO TIG-sponsored Technology

FAQ

Links

->Signa	Metrics
MING1194	I III I WARDS IN WARD

Charts

udot.utah.gov

Reports

Selected signal	Metric Settings
7376 5600 West SR-201 Westbound	Metric Type-
Signals Region All Metric Type All Filter Signal Id Filter Clear Filter	Approach Delay Approach Volume Arrivals On Red Purdue Phase Termination Speed Purdue Coordination Diagram
Signal List	Y Axis MaximumPercentile Split 85 Image: Show Plan StripesImage: Show % Max Out/ Force OffImage: Show Ped ActivityImage: Show Percent Gap OutsImage: Show Average SplitImage: Show Percent SkipImage: Outon Current DataImage: DatesStart Date5/1/2014Image: DatesStart DateImage: Start Date

Create Metrics

http://udottraffic.utah.gov/signalperformancemetrics

An AASHTO TIG-sponsored Technology

FAO

Charts

Reports

Log Action Taken

.

Links

Agencies using UDOT software for SPMs

http://udottraffic.utah.gov/signalperformancemetrics

🕩 i2 Region 2

<u>File View Objects Monitor Params Control Alert Setup Analysis Admin Reports Tools Help</u>

View Controller MSG

Detector Activations and Poll Rates.

Detector Activations and Poll Rates.

POLL		RESPONSE	POLL		RESPONSE	POLL		RESPONSE
					, this active	ation gets re		
•		•			•		•	
3 Polling Cycles in 1 Second								

The Econolite ASC3 Controller

- Collects events at 1/10 second resolution
- Stores the collected events in binary log files for maximum storage efficiency
- The files are retrieved over FTP
- UDOT uses APP version 2.54 and OS version 1.14.03.

Setback Count Detectors

- Wavetronix Advance
- Used to timestamp vehicle arrivals
- 10' count zone placed
 ~350' behind stop bar
- No additional expense if already in place for dilemma zones
- May undercount dense traffic

Loops

- We have one site that uses loops for advanced detection.
- The loops come in on separate detection channels. They are combined together in the SPM software to give accurate counts.

23 00

Speed Detection

- Uses the Wavetronix Advance
- The detector sends the recorded MPH, KPH, timestamp and detector ID to a server.
- The server records the information to the database for use in the charts.

Wavetronix Matrix detectors

- Used for turning movement counts
- Lane-by-lane detection zones in front of stop bar
- Requires detection rack card for every two zones (\$\$\$\$\$)
- Wavetronix is expected to release a new high-capacity detector BIU in June, 2014.

Standard stop bar detection

The intersection can still be monitored with the Phase Termination and Split Phase charts.

Plan 7

Communication

- UDOT has the advantage of fiber Ethernet to nearly every signal cabinet in the state.
- This provides fast and reliable communication, making the wide-scale rapid collection of hi-res data feasible.
- Even so, event collection is typically 7-10 minutes behind real time.

Communication

- In the locations we lack fiber, DSL provides a connection to a fiber channel.
- In the few sites that remain, we are investigating "Sneaker-Net" solutions, such as the Raspberry Pi.

Signal Identifier

- Each intersection must have a unique identifier.
- UDOT uses 4-digit ID numbers that have been assigned by region to every intersection in the state.

Time Synchronization

The controller times must be synched, or the events do not make much sense.

It is possible to synchronize the time on NTCIP controllers without a central signal system.

Enabling the Hi-Res Logger

- Logging on the ASC3 controllers can be enabled and disabled over SNMP. There is no option for it through the front panel.
- VOIT logging, if enabled, must be disabled first.
- If the controller is reset, logging must be enabled again.

Data retrieval and storage

- The events are stored in binary .dat files on the controller
- The binary format significantly reduces the amount of storage space required on the controller.

03 04 05 06 07 08 09

Volume Per Hou

Wasatch Blvd Big Cottonwood Signal 7830 Phase: 6 Southbound Sunday, May 25, 2014 12:00 AM - Sunday, May 25, 2014 11:59 PM

15

12 13 14

Time (Hour of Day)

Retrieving the binary file

- ▶ The ASC3 controllers have FTP servers.
- The .dat files are located in the /SET1 directory.
- A program periodically collects the .dat files from the controller using FTP, and stores the files in on the database server.

The .CSV file

- The controller does not know its own ID.
- Therefore, the Signal ID is no where in the .csv file.
- That information must be added to the record before it is added to the database

Ele Edf Format Wew Help	ECON_172	17.160.28_2014_04_25_1632.csv - Notepad	- O ×
Timestamp.Event Type,Parameter 3 /25/2014 16:32:47.1., intersection #172.17.160.28 /25/2014 16:32:47.1., intersection #172.17.160.28 /25/2014 16:32:47.1., MAC Address: 1,02:04:81:00:9d:fe /25/2014 16:32:47.1., phases in use:.2,3.4.8 /25/2014 16:32:47.1., state address: 1,02:04:81:00:9d:fe /25/2014 16:32:47.1.3, Phases in use:.2,3.4.8 /25/2014 16:32:47.7.83.15 /25/2014 16:32:47.7.83.15 /25/2014 16:32:47.7.83.26 /25/2014 16:32:47.7.83.26 /25/2014 16:32:47.7.83.26 /25/2014 16:32:47.7.83.26 /25/2014 16:32:47.7.83.26 /25/2014 16:32:48.3.81.4 /25/2014 16:32:48.3.81.4 /25/2014 16:32:48.3.83.4 /25/2014 16:32:49.5.82.4 /25/2014 16:32:49.5.82.4 /25/2014 16:32:49.5.82.4 /25/2014 16:32:50.8.44.8 /25/2014 16:32:50.8.84.4 /25/2014 16:32:50.8.84.4 /25/2014 16:32:50.8.84.4 /25/2014 16:32:50.8.84.4 /25/2014 16:32:50.8.84.4 /25/2014 16:32:51.5.82.4 /25/2014 16:32:54.8.82.24 /25/2014 16:32:51.8.84.4 /25/2014 16:32:54.8.84.8 /25/2014 16:32:55.8.84.4 /25/2014 16:32:55.8.84.4 /25/2	<u>File E</u> dit F <u>o</u>	rmat <u>V</u> iew <u>H</u> elp	
	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	<pre>twont Type Parameter 16:32:47.1, version #,3 16:32:47.1, iEcoN_172.17.160.28_2014_04_25_1632.dat 16:32:47.1, iEcoN_172.17.160.28 16:32:47.1, iP Address:,172.17.160.28 16:32:47.1, iPaces:,00:04:81:00:90:fe 16:32:47.1, iPases in use:,2,3,4,8 16:32:47.2,82,20 16:32:47.7,81.26 16:32:47.7,81.26 16:32:47.7,81.26 16:32:47.7,81.26 16:32:47.7,81.26 16:32:48.5,81.4 16:32:48.5,81.4 16:32:48.5,81.20 16:32:49.5,82.4 16:32:49.5,82.4 16:32:49.5,82.4 16:32:49.5,82.4 16:32:50.8,81.26 16:32:51.5,82.4 16:32:52.5,81.4 16:32:52.5,81.4 16:32:55.6,81.4 16:32:55.6,81.4 16:32:55.6,81.4 16:32:55.8,84.4 16:32:55.9,34.4 16:32:55.9,34.4,8 16</pre>	16:32:47.1

The Event Database

- Each record in the CSV must have the signal ID added to it.
- The record can then be added to the database.
- On average, each intersection will need 11MB per day.
- UDOT requires 11 GB per day to hold the collected controller events.

Database Schema

Detectors Table DetectorID SignallD DetectorChannel Approach Direction Associated Phase Signal ID **AvailableReports**

Event Log Table

Timestamp

Event Code

Event Param

Signal Table

SignallD

PrimaryName

SecondaryName

ControllerType

Longitude

Latitude

IPAddress

Why the Schema Matters

•The Event log contains four pieces of information:

SignalID, Timestamp, Event Code and Event Parameter Signal ID

Event Log Table

Timestamp

Event Code

Event Param

•The entry for a detector activation would look like:

1001,01/01/2014 12:37 33:20, 82, 12

•The last two values are the Event code (82) and the Event Parameter (12)

• Event Code 82 indicates a detector activation on detector channel 12 (the Event Parameter)

Why the Schema Matters

- We need a way to relate signal ID and detector channel to approach direction and phase number.
- The controller does not have this information.
- That is why we need a list of Detectors

Detectors Table

DetectorID

SignallD

DetectorChannel

Approach Direction

Associated Phase

AvailableReports

Why the Schema Matters

Signal Table

SignalID

PrimaryName

SecondaryName

ControllerType

Longitude

Latitude

IPAddress

What you will need

- A Database server
- Microsoft SQL server 2008 or later
- Microsoft Windows server 2008 R2 or later
- Disk space requirements will vary, but you will want a lot (We started with 8 TB, and we are running out)
- The more processors you can get, the happier you will be.

What you will need

- A Web Server
- Windows Server 2008 R2 or later
- Internet Information Server 7.0 or later
- Faster processors and more RAM will provide a more responsive experience.
- Hard drive requirements for the web server are minimal

Hardware Mitigation

- Reduce storage requirements by deleting old data. (Do you really need to know when a car crossed a detector 3 years ago?)
- Archive old records to tape or other media, and restore it when needed. (It might be best to do this in a .CSV format instead of a database backup)

Hardware Mitigation

- The UDOT SPM system can be hosted on multiple smaller computers, instead of one large and expensive one.
- The hard drive requirements will still be large, however.

Probe Data

TMC Code	TMC Name	Range ID	Time Range	TMC Length	Avg. Travel Time	Std. Dev.	% Good Bins	Avg. Confidence Score
116+05735	Bangerter From: 12600 S To: 9000 S	1	1/6/2014 - 1/17/2014 From: 5:00 PM To: 6:00 PM	4.6	6.04	0.51	94%	30
116+05735	Bangerter From: 12600 S To: 9000 S	2	1/27/2014 - 2/7/2014 From: 5:00 PM To: 6:00 PM	4.6	5.95	0.43	92%	30
116+05735	Bangerter From: 12600 S To: 9000 S	3	2/3/2014 - 2/7/2014 From: 5:00 PM To: 6:00 PM	4.6	6.18	0.47	93%	30
116+05736	Bangerter From: 9000 S To: 7800 S	1	1/6/2014 - 1/17/2014 From: 5:00 PM To: 6:00 PM	1.46	1.75	0.20	84%	30
116+05736	Bangerter From: 9000 S To: 7800 S	2	1/27/2014 - 2/7/2014 From: 5:00 PM To: 6:00 PM	1.46	1.77	0.26	65%	30
116+05736	Bangerter From: 9000 S To: 7800 S	З	2/3/2014 - 2/7/2014 From: 5:00 PM To: 6:00 PM	1.46	1.78	0.22	69%	30
116+05737	Bangerter From: 7800 S To: 7000 S	1	1/6/2014 - 1/17/2014 From: 5:00 PM To: 6:00 PM	1	1.27	0.16	91%	30
116+05737	Bangerter From: 7800 S To: 7000 S	2	1/27/2014 - 2/7/2014 From: 5:00 PM To: 6:00 PM	1	1.30	0.30	77%	30
116+05737	Bangerter From: 7800 S To: 7000 S	3	2/3/2014 - 2/7/2014 From: 5:00 PM To: 6:00 PM	1	1.35	0.36	83%	30
116+05738	Bangerter From: 7000 S To: 6200 S	1	1/6/2014 - 1/17/2014 From: 5:00 PM To: 6:00 PM	0.92	1.23	0.20	88%	30
116+05738	Bangerter From: 7000 S To: 6200 S	2	1/27/2014 - 2/7/2014 From: 5:00 PM To: 6:00 PM	0.92	1.37	0.43	79%	30
116+05738	Bangerter From: 7000 S To: 6200 S	3	2/3/2014 - 2/7/2014 From: 5:00 PM To: 6:00 PM	0.92	1.49	0.55	89%	30
116+05739	Bangerter From: 6200 S To: 5400 S	1	1/6/2014 - 1/17/2014 From: 5:00 PM To: 6:00 PM	1.04	1.39	0.13	89%	30
116+05739	Bangerter From: 6200 S To: 5400 S	2	1/27/2014 - 2/7/2014 From: 5:00 PM To: 6:00 PM	1.04	1.43	0.17	81%	30
116+05739	Bangerter From: 6200 S To: 5400 S	3	2/3/2014 - 2/7/2014 From: 5:00 PM To: 6:00 PM	1.04	1.45	0.19	92%	30
116+05740	Bangerter From: 5400 S To: 4700 S	1	1/6/2014 - 1/17/2014 From: 5:00 PM To: 6:00 PM	1.01	1.30	0.15	92%	30

Executive-Level Reports

Executive Summary

5/25/2014 to 5/25/2014

Statewide Summary

Arrival on Red		Dela	Volume	Intersections		
Percent	Platoon Ratio	Daily Average Per Approach (hrs)	Average Per Veh (sec)	Daily Average Per Approach	Total	Number Of Approaches
29 %	2.72	0.01	6.18	4,761	375	773

Region Summary

Region	Arrival on Red		Delay		Volume	Intersections		
Name	Percent	Platoon Ratio	Daily Average Per Approach (hrs)	Average Per Veh (sec)	Daily Average Per Approach	Total	Number Of Approaches	
1	20 %	14.47	0.00	1.68	731	94	182	
2	29 %	1.50	0.03	6.45	6,606	168	364	
3	26 %	18.87	0.01	5.96	992	104	208	
4	17 %	1.23	0.10	1.56	4,190	9	19	

Trivia and Statistics

- The UDOT SPM system is written in C#, Javascript and ASP.NET
- At last count, more than 90,000 lines of code went into the system (that includes the auto-generated files that must be maintained)
- As of June 1st, 2014, there were more than 53 billion records in the UDOT SPM Database

Trivia and Statistics

- Our database server, purchased in 2011, cost about \$15,000. 80% of that cost was for hard drives.
- We are adding another 12 TB of drive capacity, which we hope will provide another 3.5 years of record storage.
- We estimate we have saved the state 1.5 million dollars so far, based on our ability to find broken detectors, optimize offsets and collect count information.

CRITICAL INFRASTRUCTURE ELEMENTS: INDOT Implementation

INSTITUTE OF TRANSPORTATION ENGINEERS WEBINAR PART 3 – JUNE 11, 2014 PRESENTED BY HOWELL LI

INDOT Signal Systems Network

- 2505 signals
- 196 signals with high-resolution data enabled
 - Mixed cellular, wireless, and fiber infrastructure
- Vendor-neutral system
- Open source software for back office
- Joint INDOT-Purdue software development

Cabinets and Controllers

 All performance measure-enabled cabinets are NEMA standard

Make	Num. Connected
Econolite	188
Peek	7
Siemens	1
Total	196

Detection

Cut or pave-over loops

SDLC interface

Connection Methods

- Hauling data back to the TMC
 - <u>Commercial cellular networks (public</u> <u>network)</u>
 - Each subscription costs \$34.99/mo
 - Recommend separate Virtual Private Network (VPN)
 - <u>Wireless broadband and fiber backbone</u> (private network)
- Hauling data between cabinets
 - Localized longitudinal fiber
 - Broadband or 900 mhz Ethernet radios
- Customize on location needs and costs

INDOT Signals Connectivity

Commercial Cellular Networks

Wireless Broadband and Fiber (no arterial fiber)

Wireless Broadband and Fiber Backbone

Wireless Broadband and Fiber Backbone

Wireless Broadband and Backbone Fiber

Longitudinal Fiber with Cellular Backhaul

900 mhz Ethernet radio with Cellular Backhaul

"Sneaker Net"

No connection infrastructure needed

- Cost-effective solution to get data needed by performance measures
- Saves data on SD memory card (up to the size of the card)
- Requires occasional field visits for retrieval

Servers for a Production System

- Processing Server
 - Retrieves data files from controllers via FTP
 - Data decoding and massaging
 - Saves processed data to Database Server
- Database Server
 - Stores and distributes high-resolution data
- Web Server
 - Client-side interface
 - Generates performance measures
- Hardware Specification
 - Dell PowerEdge R710
 - 2x Quad-Core Intel Xeon Processors
 - 96 GB of RAM
 - 3TB 12TB disk storage (10,000 RPM drives, RAID)

Software – All open source

- Operating System
 - Ubuntu Linux (version 12.04 LTS)
- Processing Server
 - PHP scripting (version 5.3)
 - Vendor-supplied decoding software
- Database Server
 - PostgreSQL (version 9.1)
 - Relational Database Management System (RDBMS)
- Web Server
 - Apache HTTP Server (version 2.2)
 - PHP Scripting (version 5.3)

How each server is tasked

Data Flow – From Field to User

Data Storage Requirements

Data Storage Requirements

Data Storage Requirements

Data Storage Requirements

Find out more: http://tig.transportation.org

AASHTO TIG	TIG Home	
TIG Home	AASHTO > AASHTO Technology Implementation Group > TIC Home	
About TIG	AASHTO > AASHTO Technology Implementation Group > TG Home	
Focus Technologies		
• Executive Committee	AASHTO's Technology Implementation Group — or TIG — scar technology and invests time and money to accelerate their ad	ns the horizon for outstanding ad option by agencies nationwide.
Feedback	Fach waar. TIC calacte a bighty valuable, but lavach, waraa aris	
 Additionally Selected Technologies 	that has been adopted by at least one agency, is market read	y and is available for use by othe
 TIG-Solicitation 	Guided by the vision of "a culture where rapid advancement ar	nd implementation of high payoff,
● Lead States Team Guidance ▶	expectation of the transportation community," TIG's objective is to share information with AAS agencies, and their industry partners to improve the Nation's transportation system.	
	Recently selected technologies with links to additional information are listed below. Also, you m and Additionally Selected Technologies categorized by AASHTO subcommittee interest area.	
	Lead States Team Focus Technologies	Additionally Selected
	2013 Focus Technologies	2013 ASTs
	 Automated Traffic Signal Performance Measures UPlan Phase II 	Double Crossover Dia
		Prior Four Years ASTs
	Prior Four Years Focus Technologies	1 A
		 Anonymous Wireless

Time Data Collection

Currenture Extension f

- Embedded Data Collector
- Environmental Planning GIS Tools.

Additional Reading

PERFORMANCE MEASURES FOR TRAFFIC SIGNAL SYSTEMS

An Outcome-Oriented Approach

Christopher M. Day, Darcy M. Bullock, Howell Li, Stephen M. Remias, Alexander M. Hainen, Richard S. Freije, Amanda L. Stevens, James R. Sturdevant, and Thomas M. Brennan

http://tinyurl.com/signalmoe

DOI: 10.5703/1288284315333

Purdue

Shane JohnsonDr. Chris DayUDOTPurdueThank you.COMMENTS OR QUESTIONS?

http://tig.transportation.org http://tinyurl.com/signalmoe

TIG SPM TEAM CONTACTS

Mark Taylor Utah DOT 801-887-3714 marktaylor@utah.gov

Jamie Mackey Utah DOT 801-887-3489 jamiemackey@utah.gov

Steve Misgen Minnesota DOT 651-234-7835 steve.misgen@state.mn.us Jim Sturdevant Indiana DOT 317-899-8603 jsturdevant@indot.in.gov

Richard Denney FHWA 410-962-4796 richard.denney@dot.gov

Andrew Wimsatt

TTI 979-862-4597 awimsatt@ttimail.tamu.edu